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This is a summary of a longer literature review which is available  
to download in full from www.nuffieldfoundation.org/probability.

Children’s understanding of probability was commissioned by the 
Nuffield Foundation following the 2009 publication of a wider 
review into how children learn mathematics: Key understandings  
in mathematics learning, by Peter Bryant, Terezinha Nunes and  
Anne Watson. Key understandings is available to download from  
www.nuffieldfoundation.org/key-understandings.
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Foreword

In 2009, the Nuffield Foundation published Key understandings in mathematics learning, a review 
of the research literature on how children learn mathematics. It has been widely read and has 
already had an impact on mathematics teaching and policy in several countries. 

Probability was not included in Key understandings, and we subsequently commissioned two 
of its authors, Professors Peter Bryant and Terezinha Nunes from the University of Oxford, to 
examine the evidence on this topic. This report is a summary of their review, which is available 
to download in full on our website. 

There are four key reasons for our interest in probability. First, we wondered whether the 
teaching and learning of probability took sufficient account of children’s prior knowledge of 
fairness, randomness and chance - concepts which are acquired at a very young age and which 
lay the foundations for probabilistic thinking. Key understandings noted that primary school 
geometry often failed to build on children’s pre-school knowledge of spatial relations, and we 
thought probability might offer an interesting parallel. Second, the extent to which probability 
forms part of the primary curriculum has been subject to change in recent decades and so 
a consolidation of the evidence is timely. Third, this evidence is essential to underpin further 
research and development work, and fourth, probability is particularly relevant to our interest 
in statistical literacy in the wider population. Adults as well as children often find it difficult to 
think rationally about probability and randomness, so early encounters with these concepts are 
important. 

In this review, the authors identify four ‘cognitive demands’ made on children when learning 
about probability, and examine evidence in each of these areas: randomness, the sample space, 
comparing and quantifying probabilities, and correlations. They draw together international 
evidence, from the early years through to adulthood, and highlight studies that are of particular 
relevance to teaching. They also identify areas that have been relatively neglected and would  
benefit from further research, particularly from fully evaluated intervention projects.

Indeed, the authors are currently seeking to address some of these gaps through a large-scale 
controlled study of the teaching of probability to 9-to-10-year-olds, which the Foundation is 
pleased to be funding. 

We are grateful to the authors for their unstinting enthusiasm and commitment to this topic.  
The review is an informative and engaging read for anyone interested in how we understand 
(and misunderstand) probability, and provides valuable evidence that could be used to inform 
both teaching approaches and the design of future research. 

Josh Hillman, Director of Education
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Summary of the review

The ‘cognitive demands’ of understanding probability
Many of the events and relations in people’s lives are well understood 
and entirely predictable. If we knock a glass over, the liquid in it spills. If 
John is Michael’s father, John must be older than Michael. Other events 
and associations, such as a road accident or winning a lottery, are less 
predictable because they happen randomly. People know they might 
happen, but are uncertain if and when they will happen. 

We can, nevertheless, reason logically about random events. This 
reasoning allows us to work out the probability of particular outcomes, 
and thus to understand the risks and possible benefits of acting in one 
way rather than another. 

The understanding of the implications of randomness also lies at 
the centre of all statistical thinking. We decide the significance of 
any difference, for example in the recovery rates of patients given a 
specific drug and of others given a placebo, by calculating whether this 
difference could have happened by chance. Many associations, such 
as the association between income and health, are imperfect, and the 
most effective way of working out whether there is a genuine relation 
between two variables is to work out how much of the association 
could be due to random factors.

Randomness and uncertainty play an important part in scientific 
thinking as well, since many physical processes, such as the movement 
of subatomic particles are random, and need to be analysed in terms 
of probability.

Another good reason for people to be able to think rationally about 
randomness and uncertainty is that randomisation plays an important 
part in ensuring fairness in their every daily lives. Playing cards are 
shuffled and people are selected by lot to ensure that no one is given 
an unfair start.

Despite the central importance of randomness and probability in 
our lives, it is clear that children, and many adults as well, often have 
great difficulty in thinking rationally about, and quantifying, probability. 
Probability is quite a complex concept, and in order to learn about it  
we have to draw on our understanding of four different aspects of 
events and the sequence in which they occur. These four ‘cognitive 
demands’, as we call them in the report, are: 
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•	 Understanding randomness: To understand the nature and the 
consequences of randomness, and the use of randomness in our 
everyday lives.

•	 Working out the sample space: To recognise that the first and 
essential step in solving any probability problem is to work out all 
the possible events and sequences of events that could happen. 
The set of all the possible events is called ‘the sample space’ and 
working out the sample space is not just a necessary part of the 
calculation of the probabilities of particular event, but also an 
essential element in understanding the nature of probability.

•	 Comparing and quantifying probabilities: Probabilities are quantities 
based on proportions, and one has to calculate these proportions 
to make most (but not all) comparisons of the probabilities of two 
or more events. These proportions can be expressed as decimals, 
as fractions or as ratios.

•	 Understanding correlation (or relationships between events): An 
association between two kinds of event could happen randomly 
or, alternatively, could represent a genuine relationship. To discover 
whether there is a non-random relation or not, we have to 
attend to the relation between confirming and disconfirming 
evidence and check whether the frequency of confirming cases 
could have happened by chance. This means that, in order to 
understand correlations, we need to understand all three ideas 
mentioned above. 

Randomness
Randomisation is a common and important part of everyday life, but 
it is clear that many adults’ grasp of the nature of randomness and its 
consequences is quite tenuous. Research on young children suggests 
they have even more difficulty understanding randomness than adults. 

Some aspects of randomness may be easier to understand than others. 
There are claims, for example, that even babies can understand the link 
between uncertainty and randomness. One study apparently shows that 
babies realise that choices made by people who cannot see what they 
are doing will be random, and governed by probability, whereas people 
who can see what they are doing will choose items that they want 
(Denison and Xu, 2009). However, problems with the design of this 
study mean it is not possible to reach a definite conclusion about this.

Piaget and Inhelder (1975) were the first to study children’s 
understanding of randomness. In a classic experiment, they progressively 
randomised the position of marbles of two different colours, which 
were initially grouped by colour at one end of a tray, by tilting the tray 
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and letting the marbles roll to the other side, and then by tilting it back 
and forth repeatedly. Young children could not predict the consequent 
jumbling of the two colours. However, this context was probably strange 
to the children, and the study needs to be done again with forms of 
randomisation, like shuffling cards, that are more familiar to children.

Research, using computer microworlds, has shown that by the age of 
about ten, many children realise that there is an association between 
randomness and fairness, and that randomisation can be an effective 
way of ensuring fair allocations (Pratt and Noss, 2002; Paparistodemou 
et al, 2008; Watson et al, in press). This association could be used to 
teach children more about the nature of randomness.

A common mistake made by adults and children, is to disregard the 
independence of successive events in a random situation. One’s chance 
of getting a tail on the next toss of a coin is not affected by what 
happened on previous throws. Even if the last six throws were all tails, 
the result is no more or less likely to be a tail again on the next throw 
than it was on the first. Many people make the mistake of judging that, 
after a run of one kind of outcome, a different outcome is more likely 
the next time round. This is called the ‘negative recency’ effect. Another 
kind of mistake, called the ‘positive recency’ effect, is to predict after a 
run of one outcome that the same outcome is more likely to happen 
the next time. Many adults (Gilovich et al,1985) and most children 
make these mistakes, but recent research shows a higher proportion 
of positive recency errors among children than among adults and vice 
versa with negative recency errors (Chiesi and Primi, 2009).

Sample space
We can only calculate the probabilities of particular events if we 
know what all the possibilities are. The complete set of possibilities 
in a probability problem is called its ‘sample space’. Working out the 
sample space is the essential first step in solving any probability problem 
(Keren, 1984; Chernoff, 2009), and in many it is the most important, 
since the solution is often quite obvious to someone who knows all the 
possibilities. Yet this aspect of probability has been relatively neglected in 
research on children’s ideas about chance, which has concentrated for 
the most part on children’s understanding of randomness and on their 
ability to quantify and compare probabilities.

Much of the information on people’s awareness and use of sample 
space comes from mistakes that children and adults make in reasoning 
about probability, which they wouldn’t have made if they had a 
thorough grasp of the relevant sample space (Fischbein and Gazit, 1984; 
LeCoutre and Durand, 1988; LeCoutre, 1992; Van Dooren et al, 2003).
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In many probability problems it is necessary not only to list all the 
possibilities in the sample space, but also to classify them. This second 
step, which is usually referred to as `aggregation’, can cause many 
children a great deal of difficulty. For example, if you throw two dice at 
the same time, there are 36 possible equiprobable outcomes (1,1; 1,2; 
1,3 etc.). But, if you record the result in terms of the sum of the two 
numbers thrown, there are only 11 possible outcomes for the sums, 
which are two to12, and they are not equiprobable: a total of seven is 
twice as likely as a total of four, for example, because only three of the 
36 possible pairs add up to four, whereas six of them add up to seven. 
Thus the individual outcomes are equiprobable but the aggregated 
outcomes are not. This difference causes great difficulty to some 
children (Abrahamson, 2009), and possible ways to address this would 
be an interesting question for further research. 

The importance of the sample space also raises a general cognitive 
question, which is fairly obvious, but has never been discussed. To work 
out the sample space, the child must imagine the future in a particular 
way, and has to think of all the possible events that could occur in a 
particular context. There is some research on children’s anticipation of 
particular and highly determined future events, but none on their ability 
to construct an exhaustive list of alternative, and uncertain, possibilities. 
Studies of this aspect of thinking about probability are sorely needed.

Quantifying probabilities
Probability is a quantity: it is a quantity based on proportions, and is 
usually expressed as a decimal number, a percentage or a ratio. The 
solution to most probability problems rests on the calculation of one 
or more proportions, but a few can be solved on the basis of simple 
relations like ‘more’ or ‘larger’.

There is some evidence that even babies in their first year of life form 
expectations about the relative probability of two different possible 
events (Teglas et al, 2007; Xu and Garcia, 2008; Xu and Denison, 
2009). They are surprised when someone draws mostly red balls from 
a container that they know to contain many more white than red 
balls. This reaction to an improbable outcome is evidence that they 
have some idea of the difference between probable and improbable 
outcomes. However, this is not evidence that they understand the 
proportional nature of probability.

Proportional reasoning in general, and not just proportional reasoning 
about probability, is difficult for young children. In the sphere of 
probability, this difficulty is most clearly illustrated by tasks in which 
children have to compare two or more different probabilities.  
Martignon and Krauss (2009) cite an example of this in a problem 
given to 15 year-olds: ‘Box A contains one white and two black marbles.  
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Box B contains two white and five black marbles. You have to draw a 
marble from one of the boxes with your eyes covered. From which 
box should you draw if you want a white marble?’ The solution is 
not to be found in the absolute numbers of the two colours, but in 
the proportion of white marbles in each box. A large majority of the 
15-year-olds given this problem made the wrong choice. Research 
by Piaget and Inhelder (1975), Falk et al (1980), Fischbein and Gazit 
(1984), and Falk and Wilkening (1998), does establish that pupils 
get better at making proportional calculations of probability as they 
grow older. However, there is no evidence to support Piaget’s view 
that nearly everyone eventually becomes able to reason about 
probabilities proportionally. It is possible that many people never 
manage to do so effectively.

Proportions can be thought of, and calculated, in two ways. One is as 
a relation of a part to the whole. If a box contains two red and six 
blue marbles, the whole is all the eight marbles and the proportion of 
red marbles is 2/8 or 0.25, and of blue marbles 6/8 or 0.75, and this 
proportion is usually expressed as a fraction or a decimal number. The 
other is as the relation of one part to another, which is expressed as 
a ratio. In this example, the ratio of red to blue marbles is 2:6 or 1:3. 
There is good evidence that children come to understand proportions 
as ratios (part-part relations) before they understand them as fractions 
(part-whole relations) (Nunes and Bryant, 1996). This important 
distinction, however, has never been studied systematically in research 
on children’s understanding of probability. Nonetheless, the reports 
of children’s justification for their correct answers in probability 
comparisons in Piaget and Inhelder’s (1975) and in Fischbein’s research 
suggest that for the most part they used ratios rather than fractions 
in their reasoning (Fischbein, 1987; Fischbein and Gazit, 1984). The 
implication of this hypothesis is that children would learn about 
probabilities more easily if they are initially introduced as ratios. 

In many instances, the probability of an event is dependent on the 
probability of another event. These conditional probabilities often cause 
adults, as well as children, a great deal of difficulty, as Kahneman and 
Tversky’s (1972) work has established. An example of a conditional 
probability problem is a question about the likelihood that someone 
who has tested positive for a particular disease actually has that disease, 
when the incidence of the disease is 0.001 (or 1 in 1000) and the 
false positive rate for the test is 0.05 (or 5%). In this case the correct 
answer is dependent, not just on the false positive rate, but also on 
the incidence of the disease in the general population. Many people, 
however, attend only to the false positive rate of the test and not to 
the incidence of the disease, and this leads them to wildly incorrect 
calculations (in this example, to the incorrect answer that the probability 
is 0.95). Recent research has shown that children and adults are much 
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more likely to work out conditional probabilities correctly if the basic 
information is given as absolute numbers (one person in a thousand has 
the disease: five out of a hundred people who do not have the disease 
will test positive) than as decimal fractions (the probability of someone 
having the disease is 0.001, and the false positive rate is 0.05) (Hoffrage 
et al, 2002; Zhu and Gigerenzer, 2006). This interesting difference may 
be connected to the distinction between working with ratios and with 
fractions in probability problems. It is relatively easy to convert absolute 
numbers into ratios. Thus, the suggestion of teaching children about 
probabilities by first presenting these as ratios, rather than as fractions, 
may hold for conditional, as well as for simple, probabilities. It would be 
easy to do research on this idea.

Correlations
When two events happen together, their co-incidence might be either 
a random occurrence or the result of a genuine relationship. Since most 
such relationships are imperfect (taller people are usually heavier than 
shorter people but some short people weigh more than expected 
and some tall people weigh less than expected), we have to work out 
whether the imperfection of the association amounts to randomness 
or to a regular relation with exceptions. Thus, correlational thinking 
depends, at least partly, on an understanding of randomness. 

Correlational thinking also depends on children realising that the way 
to work out whether an association is random or not is to consider 
the relative amount of confirming and disconfirming evidence. It is 
difficult to consider the relative amount of confirming and disconfirming 
evidence without systematic records and their quantification. When 
people use simple intuitive reasoning, they often fall prey to a 
confirmation bias: they pay more attention to the confirming than 
to the disconfirming evidence (Wason, 1968; Evans, 1989; Nickerson, 
1998). Examples of this tendency are the idea that someone may have 
a winning streak in a casino, as if the turning of the roulette wheel had a 
connection with the player’s choice, or that basketball players can have 
a hot hand, as if the fact that they scored in their last attempt makes it 
more likely that they will score again (Gilovich et al, 1985). Professionals 
working in clinical situations must be particularly aware of this 
confirmation bias: they see a biased sample of people and it is difficult 
for them to avoid this bias without systematic research (Chapman and 
Chapman, 1967; 1975). For example, if clinicians think that people only 
get better from problem X with a treatment that they prescribe, they 
must remember that the people who get better without the treatment 
are the people that they did not see, so they need to be aware of the 
risks of confirmation bias.

There is evidence that some adolescents do learn about the need 
to work out the relationship between the confirming and the 
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disconfirming cases, and to do so proportionally (Inhelder and Piaget, 
1958), but it is not clear yet how general this learning is. It is possible 
that only a minority learn to consider and relate the two kinds of 
evidence (Adi et al, 1978; Karplus et al, 1980; Batanero et al, 1996), 
and possibly only in situations where the two types of evidence can be 
systematically quantified and compared (Ross and Cousins, 1993). If this 
is the case, education should play a major role in people’s understanding 
of correlation (Vass et al, 2000). 

The future of research on children and probability
Research on children’s understanding of probability has produced 
many interesting and educationally valuable conclusions, such as 
children’s understanding of randomness in the context of fairness and 
the difficulties they have in reasoning proportionally in the context 
of probability. However, some aspects of children’s reasoning about 
probability have been relatively neglected, such as the cognitive basis 
for constructing the problem space and the relative effectiveness of 
presenting and calculating proportions as ratios or as fractions. Another 
serious gap in research on children’s ideas about probability is in 
longitudinal research, which is needed to establish how well children’s 
early understanding and insights predict their overall learning later on, 
and also how complete their understanding of probability is by the time 
they leave school. 

We make two main recommendations. The first is to take advantage of 
research designs that have been successful in research on other aspects 
of children’s intellectual development. In particular, we recommend 
the combined use of intervention and longitudinal methods to study 
the links between the four aspects of probability, and to establish what 
experiences and abilities children need in order to learn about chance 
and uncertainty. This would provide a scientific basis for the effective 
teaching of probability. 

Our second recommendation is that researchers on children’s 
understanding of probability should pay much more attention to the 
great amount of related data that exists on other aspects of cognitive 
development. Probability makes a number of different cognitive 
demands and most of these demands are shared with other aspects of 
cognitive development about which we know a great deal. Probability 
is an intensive quantity, but so are density and temperature. Analyses of 
the sample space require combinatorial reasoning: so do many branches 
of scientific thinking. We think that many people doing research on 
probability have not paid attention to research on these related topics, 
and have missed out on potentially valuable information.
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