Activity description Pupils investigate paper sizes in the A and B international series. They can explore the relationships within each series and between the series. If pupils access information on paper sizes on the web, the focus of their work will need to be on interpreting and explaining their research. #### **Suitability** Pupils working at all levels; individuals or pairs #### **Time** 1 to 2 hours #### **AMP** resources **Pupil stimulus** #### **Equipment** 1 sheet of each of A3, A4, A5, B5 and B6 paper, labelled appropriately. Rulers ### Key mathematical language Dimension, length, width, area, measurement, centimetre, millimetre, double, half, ratio, proportion, scaling, surd, series, similar, congruent, upper bound, lower bound #### **Key processes** **Representing** Identifying the mathematics involved in the task and developing appropriate representations. **Analysing** Working systematically; identifying patterns; beginning to make generalisations. **Interpreting and evaluating** Considering the findings to form convincing arguments. **Communicating and reflecting** Explaining the approach taken and the outcomes achieved at each stage of the work. # **Teacher guidance** Pupils may have relevant prior knowledge, so the activity should start with a class discussion of paper sizes. Which ones are pupils familiar with? What are they used for, and why? If printing templates to create any of the sheets, please take care that the paper sizes print accurately. Consider the following starter: provide paper sizes A3 to A6 inclusive and ask pupils to write what size they think it is. Choose some of the probing questions to display around the room to prompt discussion. Open the discussion with: 'How can you find the size of A2 paper and A7 paper without physically having the paper in front of you?' The activity works best if pupils work together, pooling their resources. Consider a mini-plenary during the activity to share results, using this as an opportunity to check accuracy to allow pupils to take the activity further. # **During the activity** Encourage pupils to measure as accurately as possible, but discuss with them the idea that measurements are approximate and that there may be small errors in the rulers, the paper and/or their readings. Support pupils in focusing on the relationships between sizes. Allow sufficient time for pupils to discover these relationships. Most begin by noticing very general features, such as that the letters A and B alternate when the pieces are arranged in order of size. Even when they measure, most pupils are likely to focus on additive relationships such as 'B5 is 4 centimetres longer than A5' and 'the difference goes up by a half each time'. Use probing questions to encourage them to progress to multiplicative relationships, such as 'the length of A4 is double the width of A5', and to recognising that the various sizes are *similar*. # **Probing questions and feedback** AMP activities are well suited to formative assessment, enabling pupils to discuss their understanding and decide how to move forward. See www.nuffieldfoundation.org/whyAMP for related reading. - What units are you using to measure the dimensions? Why? - If you only had sheets of A4 paper, how could you create a sheet of A3 paper? A5 paper? What does that tell you about the relationships between the dimensions of these paper sizes? - What do you think the dimensions of A7 paper are? Why? - In addition to two A5 sheets joining lengthwise to give an A4 sheet, can you find further mathematical relations between them? - How do you know that the A series of papers are all similar? Are the B series of papers similar to the A series? - Why can't the A series of paper, that is A3, A4, A5, etc. continue forever? - What is the area of an A0 piece of paper? Why do you think that size was chosen? What about B0? - Suppose you have two pieces of paper, An and An+1 (where n is an integer). If you write the ratio of the sides of An as 1: y, what are the side lengths of An+1 in terms of 1 and y? Can you then work out the value of y? ## Additional information: International Standard (ISO) paper sizes A,B,C series images reproduced from the Wikipedia page http://en.wikipedia.org/wiki/A4_paper under the Creative Commons (CC) Attribution-Share Alike license. Successive paper sizes in the series A0, A1, A2, A3, ... are defined by requiring that they be *similar*, that a given size is obtained by halving the preceding paper size along the larger dimension, and that A0 has area $1m^2$. The first two conditions result in the following diagram: Similarity implies y:1 is the same as 2:y and therefore it follows that $y^2=2$. Thus the common aspect ratio for the A series is 1: $\sqrt{2}$. The advantage of this system is its scaling – the compatibility of the sizes with doubling. A4 (approx. 210 mm x 297 mm) is the most commonly used size. The area of the less common B series sheets is the geometric mean (GM) of successive (equivalently numbered and preceding) A series sheets. Thus, the area of B1 is the GM of the areas of A1 and A0. This implies that area B1 = area A1 xV2, area B0 = area A0xV2, and so on. Consequently the shorter lengths of the B series sheets are 1m for B0, 0.5m for B1, and so on. The area of C series sheets is the GM of the areas of the A and B series sheets of the same number. This means that C4 is slightly larger than A4, and B4 slightly larger than C4. # **Progression table** The table below can be used for: - · sharing with pupils the aims of their work - self- and peer-assessment - helping pupils review their work and improve on it. The table supports formative assessment but does not provide a procedure for summative assessment. It also does not address the rich overlap between the processes, nor the interplay of processes and activity-specific content. Please edit the table as necessary. | Representing Selecting a mathematical approach and identifying what mathematical knowledge to use | Analysing Calculating accurately and working systematically towards a solution | Interpreting and evaluating Interpreting the results of calculations and graphs in developing the final solution | Communicating and reflecting Explaining the approach taken and the outcomes achieved at each stage | |--|---|--|---| | Shows minimal understanding of the given problem, e.g. makes a visual comparison with given paper Pupil A | Recognises the systematic numbering and order of paper | Makes a simple
observation
Pupil A | Sufficient information for
someone else to
understand their
comparisons of different
paper sizes
Pupil A | | Shows fuller
understanding of the
problem, e.g. chooses to
measure dimensions of
given paper
Pupil B, D | Uses appropriate units of measurement consistently and systematically Pupils B, D | Identifies simple relationship(s) Pupils B, C, D | Presents a simple solution,
e.g. dimensions tabulated
or clearly labelled
diagrams
Pupil B | | Chooses to research and / or find other paper sizes from those provided | Performs relevant
mathematical
calculations to an
appropriate degree of
accuracy
Pupil E | Uses the relationship
between sizes to make
a general statement
Pupil E | Mathematically justifies relationship(s) found Pupil D | | Identifies other relevant
mathematical aspects to
explore
Pupil F | Calculates and analyses
more than one
attribute of the paper
sizes | Finds more complex
relationships between
dimensions of the
paper sizes
Pupil F | Expresses clearly a justification for a complex relationship Pupil E | | Identifies and makes connections between several different factors | Organises the activity
to explore in depth
several different
factors | Explains more complex relationships mathematically | Effectively and efficiently explains and mathematically justifies complex relationships between paper sizes | # Sample responses ### **Pupil A** Pupil A uses diagrams effectively to show simple relationships between adjacent paper sizes. ### **Probing question** How can you use the relationship you have found to predict the dimensions of an A3 piece of paper? ## **Pupil B** Pupil B finds and writes down the relationship between sizes to continue to find the dimensions within the A series of paper. #### **Probing questions** - See if you can find another way to find y, the width of the paper. - You've written down the perimeter of A7; how did you work that out? - What is the connection between the areas of different-sized items in a paper size series? | | Length | Sizes
Width | Area | Perimete | |--------------|------------------------|-----------------------|---|--------------| | TAO. | 118.8 | 84 | 9979.2 | 405.6 | | AI | 84 | 59.4 | 4989.6 | 286.8 | | A2 | 59.4 | A2 | 2494.8 | 202.8 | | A3 | 42 | 29.7 | 1247.4 | 1434 | | A4- | 29.7 | 21 | 623.7 | 101.4 | | A5 | 21 | 14.85 | 311.85 | 71.97 | | A6 | 14.85 | 10.5 | 155.925 | 50.7 | | :A7 | X | Y | 2 | 35.85 | | 16-400 | -Eimes | | | | | 0 0 | 1 1 | () | | | | 0 | ork out x | you take t | he width gro | m the | | To we next s | ork out x
ize bigge | you take to | he width gro
E would be | m the
the | | To we next s | | you take f
and tha | | | | To we next s | | | | | | To we next s | | | he width gro
E would be
the area fr | | # **Pupil C** Pupil C combines the A-sized and B-sized paper. Whilst the diagram has not been drawn to scale, the comment is valid. ### **Probing question** Suppose you drew this information on a graph. When the papers are placed largest area it looks like this. This shows proportion as the are placed largest area. How could the equation of the diagonal line help you to find the relationship between the length and width of different sizes? # **Pupil D** Pupil D tabulates length and width using measures consistently. The prediction is actually an observation with no indication of checking. However a reason is given for the observation made from graphing the results. # **Probing question** Can you find the gradient of the line on your graph? What would that tell you about the relationship between length and width of Asized paper? | | | | ત કાર્લ્ટ | | | |---------------|--------------|---------|--|--|--| | Size of Paper | Measurements | | Predictioner the length of the will be the same as the wich | | | | | dength | Width | | | | | AO | 1184 cm | 84cm | * the width of the size of poper is half the length
of the size of poper above. | | | | A1 | 84 cm | 59 2 cm | g we size of paper anove. | | | | A2 | 59.2 cm | 42 cm | | | | | A3 | 42 4 | 29.6cm | | | | | Ач | 29. 6cm | 21 cm | | | | | A 5 | 21 cm | 14.8 cm | | | | | A 6 | 14.8cm | 10.5cm | | | | | A7 | 10.5cm | 7.4cm | | | | | A8 | 4.4cm | 5.25am | | | | - 1 We measured the langth and width of the papers that we had. 1 We put the results into a table. - (3) We found the patterns between the lengths and the widths (see predictions) The Graph shows that the smaller the number after the A, the de bigger the paper. There is a pattern between sizes because the line is straight. # **Pupil E** #### Paper Investigation We predict 46 will be 14. son usen 10.5, basically half of 45 one one ruide. We predict A7 will be 10.5cm (7.4-cm) We predict A2 will be. 42.1 cm by 69.6cm. We predict A1 will be 59.6cm by 84.2 cm. We predict A0 will be 84.2 by 119.2 cm. wie goetherse by doubling and halving. If you start with A4, A3 will be double A4 on one side, A2 would be double A3 on one side e.t. c. A5 would be half A4 on one side, and A6 would be half A5 on one side e.t. c.. tengh $$A7 = 1.4$$ tengh $A6 = 1.4$ (rounded to 1.d.p) All $A6 = 1.4$ (rounded to 1.d.p) All $A6 = 1.4$ these are all 1.4 and we gives that all the rest of the A's will be too. On the graph, the 11's are in a straight wie diagonal so their connection is linear. On the An graph, it is not perfectly smarght but we turn it might be because if we might not have measured the results accuratly and we rainted them to large instead of the graph. Pupil E establishes the common ratio of length to width for A-size paper. Results are graphed with a valid observation, but no connection is made between the ratio and the graph. #### **Probing questions** - How could you check that the A series of paper sizes all have the same length/width ratio? - See if you can find the gradient of your line. How is this connected to the length/width ratio you have already found? Can you explain why? • Use the 'doubling and halving' relationship to find a more accurate ratio than 1.4. | Paper Investigation | | | | | | | | |--|-----------------|-----------------|------------------|---|--|--|--| | Area | | | | | | | | | | AB | 42 m × 29,5cm | 1239cm2 | A3 is twice the size of
Alt. | | | | | | Alt | 29.5cm x 21cm | 619.5cm2 | All is twice the size of A 5. | | | | | | A5 | 2 lcm × 14.75cm | | A5 is half the size of ALL. | | | | | 1 think
Ab would be half the size of A5. One side would be 14.75, and the other | | | | | | | | | would be 10.5cm. After checking this by folding the 195 in half my prediction was right. | | | | | | | | | predict AZ would be twice the size of A3. (42 cm x 59 cm) A = 2478 cm ² | | | | | | | | | predictAZ would be twice the size of A3. (42 m x 59 cm) A = 2478 cm² A1 would be twice the size of AZ. (59 cm x 84 cm) A = 495 cm² AO would be twice the size of A1 (84 cm x 118 cm) A: 9912 cm ax dos AO should have an area of M2 | | | | | | | | | | 3:42 | | | graph to see if there's | | | | | P | t4 = 20,5
21 | - 1.4 | | a connection between
the heights and lengths
of the paper | | | | | 1 | 45 = 21 | -1.4 1.4 | is around the J= | of the paper | | | | Pupil F finds the common ratio and makes the link to V2, but has not made the connection between this value and the lengths of the sides. # **Probing questions** - You say that your area for A0 is close to 1m². Why do you think this may not be accurate? - Explain how '1.4² is close to 2' may link with A3 being twice the size of A4. - You found the fraction length/width for A3, A4 and A5. How would your graph have helped you to explore this connection? What would be the connection between this and your statement '1.4 is around the V2'?